全国服务热线:
当前位置: 首页 > 解决方案解决方案

168体育:飞机客舱热舒适性分析与优化

发布时间:2024-02-13 17:05:23点击量:

The main task of Thermal comfort and the well-being of passengers in aircraft cabin are import criteria for airlines to purchase a specific aircraft.

机舱热舒适性与乘客的温度体验已成为航空公司在购买飞机时着重考量的要素。


The thermal comfort of passengers in particular is influenced by the air flow, the temperature distribution and the thermal radiation in a specific cabin confi-guration. The thermal comfort prediction in an aircraft cabin further depends on the numerous thermal sources, one of which is the passenger- itself.

乘客的热舒适感受尤其受机舱内的风量、温度分布与热辐射分布所影响。机舱热舒适性预期还会受到机舱内其他热源的直接影响,例如乘客自身产生的热量。



The main task of the environmental control system (ECS) of an aircraft is to provide air supply, thermal control and cabin pressurization for the crew and passengers. An amount of 0.55 lb/min of fresh air has to be supplied for each passenger within the following bounds:

飞机环境控制系统(ECS)的主要任务是为机组人员与乘客提供足量空气,热控制和客舱压力。每位乘客需要0.55磅/分钟的新鲜空气供应,其要求数据如下:

  • Proper level of oxygen
    适当的氧气水平
  • A moisture level of 7-15 %
    湿度范围为7-15%
  • Temperature in the range 21-25 °C
    温度范围为21-25 °C
  • A pressure level of approx. 750 hPa
    压力水平约为750hPa


The desired cabin pressure is regulated by controlled draining of stale air. Recirculation air and fresh air are mixed in roughly equal proportions.

通过控制排出污浊空气来调节客舱所需的合理压力。内循环空气和新鲜空气以大致相等的比例混合。

For the normal flight operation, cabin temperature is regulated to 21-25 °C. For cooling down an airplane while on the ground on a hot sunny day, one estimates the necessary cooling power to about 150-200 W per passenger. For a large capacity aircraft with 350 passengers this leads to a required cooling capacity of over 50 kW.

在正常的飞行过程中,机舱温度会被调节到21-25°C。当遭遇炎热的天气时,则需要为客舱降温,估计每位乘客消耗的冷却功率约为150-200W。对于一架载客量为350人的大型飞机而言,其所需的冷却功率将超过50kW。


不同海拔高度的环境空气温度范围


When putting the ECS system into operation, its efficiency is demonstrated with dynamic load cases:

在ECS系统运行时,其冷却效率由动态载荷工况获得:


  • Typical summer load case: cooling down from 40-24 °C 典型的夏季工况:从40°C冷却到24°C
  • Typical winter load case: heating up from -25-21 °C典型的冬季工况:从-25°C升温到21°C


The cabin target temperature has to be reached within 30 minutes. The process of heating up during the winter load case demands for up to 70°C fresh air temperature. The portion of needed fuel for the environmental control system compared to the total fuel consumption is approximately 5%.

客舱的目标温度必须在30分钟内达到。在冬季升温工况下,外循环新鲜空气的温度需要达到70°C。环境控制系统所需的燃料占比约为总燃料消耗的5%。



飞机客舱不同出风口方案设计


For the summer load case, about 25% of the ECS power is used for dehumidification of the air. Nowadays for that purpose high-pressure water separators are used. They utilize that fact that air at high pressure absorbs less water than at normal pressure levels.

在夏季工况下,大约25% 的环境控制系统功率用于空气除湿。现在我们使用高压水分离器来实现这个目的。其原理为空气在高压下比在正常压力下吸收更少的水分。



At any time within an aircraft cabin a suitable temperature has to be set. This depends for example on the typical clothing of the passengers, e.g. is it summer or winter. Furthermore, it can depend on the activity level of the passengers - are they awake or sleeping.

飞机客舱内任何时间都必须设定合适的温度。这取决于乘客的着装情况,冬季或夏季;也取决于乘客的行为活动,清醒或熟睡。


Reasons for local discomfort can be:

造成身体局部不舒适的原因可能是:

  • Intense air flow in the head or neck region
    头部或颈部区域的强烈气流
  • Cold feet
    脚冷
  • Incident solar radiation at the window seats
    靠窗座位的太阳辐射
  • Sweating due to contact with the seat, especially on longer flights
    因与座椅接触而出汗,特别是长途飞行时


机外壳和乘客的日晒负荷


When designing the cabin ventilation system, in general asymmetric and inhomogeneous thermal conditions should be avoided.

在设计客舱通风系统时,应尽量避免不对称和不均匀的热条件。


To compare local comfort indices of passengers, it is appropriate to do thermal simulations using the thermophysiological human model of THESEUS‑FE coupled with fine-grained CFD simulations. Different variants of climatization concepts can be analyzed easily this way without the need for cost-intensive prototypes.

为了比较乘客的局部舒适度指数,可以运用THESEUS‑FE的热生理人体模型结合高精细度的CFD模型进行热模拟仿真。通过这种方式可轻松进行不同环境条件下的方案分析,且不需要使用成本高昂的试制原型。



豪华飞机客舱与乘客模型在THESEUS‑FE GUI中的展示


Results of a numerical study of the air flow and the thermal comfort of the passengers in an aircraft cabin which includes thermal radiation effects are presented.

本案例展现了在热辐射影响下的客舱空气流通与乘客热舒适性的模拟研究结果。


The computations have been performed by coupling flow simulations with the Computational Fluid Dynamics (CFD) code OpenFOAM with finite element simulations of the heat transport within the passengers using the code THESEUS-FE.

这些计算是通过使用计算流体动力学(CFD)的代码OpenFOAM进行流动模拟与使用代码THESEUS-FE对乘客内部的热传递进行有限元模拟的耦合来完成的。


OpenFOAM与THESEUS-FE瞬时CFD计算


With the latter the bodies of passengers are modeled based on various layers with different heat transport characteristics to account the effects like blood flow, skin, clothing as well as activity levels and ambient humidity.

THESEUS-FE 软件内含基于人体生理学构造的模型,考虑了人体不同层的传热特性和影响,例如血流、皮肤、衣物、活动水平与环境湿度。168体育


Do728 客舱试验与模拟温度对比


Computations of the flow, thermal radiation and of the modeled passenger comfort in the cabin of the Airbus A320 and Do728 are discussed. The predicted numerical temperature distributions in the cabin of Do728 have been supported by experimental measurements with generally good consistency.

本次的飞机研究型号为Airbus A320与Do728,计算数据涵盖气体流动、热辐射与客舱乘员模型168体育。Do728模拟客舱温度数值分布已经由试验测量确认(如上图所示),且数据结果拟合度高。


注:本案例为THESEUS-FE与DLR的合作项目,更多技术内容请查看下方THESEUS-FE官网。

theseus-fe.com/zh/zh-ap


ARRK Engineering GmbH 原名 P+Z Engineering GmbH,成立于1967年,总部位于德国慕尼黑,在英国、罗马尼亚、日本和中国均设有分公司或办公室,是汽车及航空航天等行业内众多国际一线品牌的长期合作伙伴,为客户提供高端的工程开发咨询服务。


ARRK China|埃尔科中国 是德国 ARRK Engineering GmbH 在中国设立的全资子公司,志为中国汽车领域提供世界一流的工程技术服务。


欢迎关注VX


168体育
地址:  电话:  手机:
Copyright © 2012-2023 168体育公司 版权所有  ICP备案编号:粤ICP备2177544号